很多朋友对CS:GO如何应对外挂系统可能了解不多,下面我们将对CS:GO反外挂系统进行详细的介绍,如果你对此感兴趣,不妨和我们一起来了解一下。

VACnet的人机良性循环
但这并不意味着V社打算逐步淘汰它的作弊者剧院——Overwatch。二者协同工作:VACnet从Overwatch中学习检测技术。McDonald说,“我们正在使用Overwatch,而且事实上我们没能取代所有的玩家举报,我们只是做了补充。这意味着VACnet有机会和人类审判员一起发展。所以当人类审判员发现新的作弊行为时,VACnet有机会做到同样的事情。
McDonald补充说,为了使VACnet发现新型作弊,使用玩家数据对其再训练,刚训练完成那段时间,在作弊者没有作出相应应对前,检测准确率可能能接近100%。V社在本月早先时候悄悄在CS:GO的2V2模式加入了VACnet,McDonald说“这一模式下的检测准确率一度高达99%,这很漂亮。作弊者不知道我们要这么做,玩家们对此反应很开心,我们重拳打击了作弊者,这感觉太棒了。”

54核的每个刀片服务器拥有128G的RAM,4个支架上每个都有16个服务器
大型的反作弊系统
为了使VACnet能充分发挥,必须建立一个服务器集群,用来处理CS:GO数百万的玩家,海量的数据,并且这个服务器集群要随着CS:GO的增长而拓展。现在每天大约有600000场5V5的CS:GO比赛,每场比赛V社需要大约4分钟来运算,为了评估所有这些比赛中的所有玩家,每天的CPU工作量加起来有240万分钟,需要大约1700个CPU来完成这项日常工作。
所以V社买了1700个CPU,后来又额外买了1700个。“所以我们有拓展的空间”,McDonald这么说,暗示V社有意把VACnet引入其他游戏。保守的说,V社在这些硬件上必须花费至少几百万美元:64个刀片式服务器,每个有54个CPU,128GB内存。仅在2017年,CS:GO预估的销售额就有1.2亿美元,服务器的花费相比较之下,微不足道。但是这可能是为单个游戏构建的最强大,最好的反作弊系统。
这项工作仍在继续进行中,但在McDonald看来,VACnet很强大,有潜在的应用价值,不仅能在非V社游戏上应用部署,也能在Stream上的其他游戏上部署。“深度学习对行为进化而言是变革性的技术”,McDonald这么说。“我们认为深度学习的确帮助开发者从单调的重复性工作中解放出来,同时不会对玩家产生任何负面影响。与过去相比,我们的玩家现在遇到作弊者的次数更少。比起来刚开始进行反作弊工作那会,现在关于作弊的讨论也大大减少。
2017年12月初,这套反作弊系统迎来新的里程碑:在Overwatch中,VACnet的判定准确率更高了。McDonald说,“这套系统工作的非常好”。
以上就是关于CS:GO如何应对外挂系统的全部内容,希望能对大家有帮助
